近日,深海极端环境模拟研究实验室程南飞副研究员(第一作者)、周義明研究员(通讯作者)及其合作者在地球科学国际权威杂志《Communications Earth & Environment》上发表了题为“Carbon-silicon species are unlikely in subduction-zone fluids”的研究成果。近日,深海极端环境模拟研究实验室程南飞副研究员(第一作者)、周義明研究员(通讯作者)及其合作者在地球科学国际权威杂志《Communications Earth & Environment》上发表了题为“Carbon-silicon species are unlikely in subduction-zone fluids”的研究成果。该研究聚焦于俯冲带中的含碳流体。这些流体在地球深部碳循环和全球气候变化中发挥着关键作用(图1)。鉴于地球内部以硅酸盐为主,含水流体中碳-硅种型(C-Si species)的存在性对于评估从俯冲板块到地幔楔块并最终到地球表面的碳通量的规模至关重要,但该存在性仍然存在争议。为了解决这一争议,我们在与以往实验研究相当的俯冲带条件下,利用可视反应腔(例如,热液金刚石压腔)和拉曼光谱仪对含有碳和硅的高温高压流体进行了全面的原位调查。实验结果显示,在接近C-CO2缓冲剂的氧化条件下,未发现任何碳-硅种型存在的证据(见图2)。值得注意的是,在还原条件下,在不含硅酸盐的含CH4高温流体甚至是纯CH4气相中,出现了一个靠近CH4主峰的肩峰(图3)。这在以前被解释为碳-硅种型的证据,我们的结果表明它只是来自CH4的热峰。因此,俯冲带流体中不大可能存在碳-硅种型,我们无需根据该假设调整现有的深部碳循环模型。图1. 以深部碳循环为视角的俯冲带示意图。碳通过多种途径参与深部循环:(I)沉积岩和大洋岩石圈(即地壳和岩石圈地幔)岩石向俯冲带输入碳。(II)在俯冲过程中,碳通过脱挥发分作用、溶解及部分熔融等方式从俯冲板块中释放。(III)部分碳被进一步带入地幔深处并储存;(IV)一部分碳通过弧火山作用重新返回地表。需要注意的是,俯冲板片中碳的释放可以用两种端元模式来解释。①传统模式:认为俯冲板块释放的流体和熔体导致地幔楔发生部分熔融,从而产生弧岩浆;②混杂岩(mélange)模式:认为俯冲板块的沉积物、蚀变洋壳和水化的地幔物理混合形成的混合岩,以底辟(diapirs)的形式上升到地幔楔,熔化后产生弧岩浆。图2. 比较纯H2O(H1实验)、SiO2-H2O(S1实验)和SiO2-COH(S2-6实验)体系在800 ℃和约1.5 GPa下超过一小时的含水流体拉曼光谱。请注意,光谱的基线已校正,强度已根据近3600 cm-1处的H2O峰高进行了归一化处理。图 3 2800-3000?cm-1波长区域内从高温到低温还原的含CH4的含水流体和气相的拉曼光谱拟合结果。在C1实验中,锆石被用作压标。800和850 ℃的拉曼光谱是在加热过程中收集的,而400和25 ℃的光谱则是在达到最高温度后冷却过程中获得的。在C2实验中,没有使用压标,以消除潜在的硅酸盐干扰。600和700 ℃的拉曼光谱是在加热过程中采集的,而400和25 ℃的拉曼光谱是在达到最高温度后冷却过程中采集的。请注意,红色曲线表示拟合的CH4主峰,蓝色曲线表示拟合的肩峰。论文信息:Cheng N.,Chou I.-M.*,Chen Y.,Duan Z.,Wang X. and Yan H. (2025) Carbon-silicon species are unlikely in subduction-zone fluids. Communications Earth & Environment,6.
木质纤维素生物质是唯一可再生的碳资源,利用多相催化体系将木质纤维素衍生分子催化转化为高值化学品是实现能源供给多样化的重要途径,其中高效催化剂的设计开发和选择性调控是核心问题。近日,广州能源所生物质催化转化科研团队在木质纤维素衍生醛/酮还原胺化催化剂调控方面取得进展。木质纤维素生物质是唯一可再生的碳资源,利用多相催化体系将木质纤维素衍生分子催化转化为高值化学品是实现能源供给多样化的重要途径,其中高效催化剂的设计开发和选择性调控是核心问题。近日,广州能源所生物质催化转化科研团队在木质纤维素衍生醛/酮还原胺化催化剂调控方面取得进展。生物质衍生醛/酮的还原胺化反应是一种极具前景的绿色合成途径,可用于高效制备高附加值伯胺。然而,该反应的复杂反应网络导致伯胺选择性调控成为长期存在的关键挑战。一方面,还原胺化过程涉及多步加氢和氨解反应的竞争,因此催化剂对氢物种的活化能力及其选择性调控至关重要;另一方面,尽管Schiff碱被广泛认为是伯胺生成的关键中间体,但其后续转化机制仍缺乏系统性研究,特别是Schiff碱在催化剂表面的吸附构型、活性位点特性,以及其与反应体系中NH3和H2的协同作用机制目前尚未得到深入阐释。针对上述问题,生物质催化转化科研团队在前期研究的基础上,通过一种“自上而下”的再分散方法(Chinese Journal of Catalysis 2024,58,237)制备了不同载量的Pt/TiO2纳米簇催化剂,可作为模型体系研究金属电子态和纳米簇间距对催化性能的影响。研究表明,通过改变Pt纳米簇的表面密度限制其上活化氢的溢流强度,可抑制过度加氢反应的发生;同时,揭示了Schiff碱在Pt/TiO2纳米簇催化剂上的有效吸附位点 (图1),即邻近Pt纳米簇的表面Ti4+位点;且指出,由于Pt纳米簇间距较大的催化剂上这一位点更加丰富,促进了Schiff碱的转化,从而导致低载量的Pt/TiO2纳米簇表现出比高载量催化剂更高的伯胺产率。研究进一步结合动力学研究和理论计算,阐明了Pt/TiO2 纳米簇催化剂上中间体转化的竞争性反应机理(图2)。图1. 中间体Schiff碱的吸附位点研究图2. 中间体Schiff碱转化为糠胺的反应机理示意图该研究得到中国科学院基础研究领域青年团队项目、国家自然科学基金青年基金项目等资助。相关研究成果以Efficient Reductive Amination of Furfural to a Primary Amine on a Pt/TiO2 Catalyst: A Manifestation of the Nanocluster Proximity Effect为题发表于ACS Catalysis。论文链接:https://doi.org/10.1021/acscatal.4c07187
近期,中国科学院广州能源研究所黄玉萍副研究员团队在低碳电力系统的智能调度与决策领域取得了新进展。当前,在配电网与微电网的运行主体存在本质差异的情况下,实现碳责任的公平分配仍然面临巨大挑战。此外,在去中心化的多主体配电网中,实现快速、高效且安全的低碳经济调度依然存在诸多障碍?;朴衿纪哦庸菇艘桓雒嫦蛑鞫涞缤攵辔⒌缤男呕蚣?/abbr>近期,中国科学院广州能源研究所黄玉萍副研究员团队在低碳电力系统的智能调度与决策领域取得了新进展。当前,在配电网与微电网的运行主体存在本质差异的情况下,实现碳责任的公平分配仍然面临巨大挑战。此外,在去中心化的多主体配电网中,实现快速、高效且安全的低碳经济调度依然存在诸多障碍?;朴衿纪哦庸菇艘桓雒嫦蛑鞫涞缤攵辔⒌缤男呕蚣埽ㄍ?),结合时空碳强度均衡方法(STCIEM)和非合作优化策略,分析了多主体协同决策中的碳排放分配问题。图1 多主体异构网络协同运行示意图图2 在离线训练(a)和在线执行(b)求解POMGs时的EAP-MATD3的架构该研究通过引入增强动作投影多智能体双延迟深度确定性策略梯度(EAP-MATD3)算法,成功解决了低碳优化中的非凸性问题,优化了决策性能。该算法通过优化智能体目标,解决Actor-Critic失配问题,在生成符合物理系统约束的最优决策方面,相比传统的安全多智能体深度强化学习方法具有更优表现。图3 EAP-MATD3在线执行时ADN-MMG内部市场交易-碳强度结果图4 EAP-MATD3在线执行时多个微电网内部电价-碳强度-能源运行优化结果研究表明,去中心化低碳决策中的协同优化策略在提升系统效率和降低碳排放方面发挥了关键作用。然而,过度依赖单一安全约束策略(如纯奖励惩罚或简单投影)可能导致 Actor-Critic 失配,降低学习效率并隐藏安全风险。EAP-MATD3算法能够在复杂能源系统中有效平衡经济目标与环境目标,展现出更好的优化性能。本研究重点关注主动配电网与多微电网去中心化低碳运行中的复杂多主体协同决策和碳排放分配机制,为低碳电力系统的决策提供了参考依据。建议在低碳决策过程中合理平衡各主体自主优化与全局效益,避免单一策略带来的效率或安全问题;同时通过 STCIEM 确保碳责任公平分配,并借助 EAP-MATD3 优化决策,以提升整体效率和稳定性,保障低碳目标的实现。研究得到了国家重点研发计划、国家自然科学基金、广东省发改委能源局项目等资助。相关研究成果以Safe multi-agent deep reinforcement learning for decentralized low-carbon operation in active distribution networks and multi-microgrids为题发表于Applied Energy期刊,硕士研究生叶桐为第一作者,黄玉萍副研究员为通讯作者。原文链接:https://www.sciencedirect.com/science/article/abs/pii/S0306261925003393
近日,中国科学院广州能源研究所曹晏研究员团队揭示了一种双极性功能协同调控金属有机框架隔膜性能的新机制。该研究证实,经过精确调控的具有双极性官能团UIO-66金属有机框架(MOF)与隔膜相复合可显著提升钠金属电池的循环寿命,在10C高倍率测试中表现出超2000次循环的超高稳定性。近日,中国科学院广州能源研究所曹晏研究员团队揭示了一种双极性功能协同调控金属有机框架隔膜性能的新机制。该研究证实,经过精确调控的具有双极性官能团UIO-66金属有机框架(MOF)与隔膜相复合可显著提升钠金属电池的循环寿命,在10C高倍率测试中表现出超2000次循环的超高稳定性。钠金属电池(SMBs)凭借丰富的资源储量、较低原材料成本以及高达1165 mAh g?1的理论比容量,被广泛认为是锂离子电池的潜在替代技术。在此背景下,隔膜作为关键界面结构,承担着引导钠离子通量、维持电解液分布均匀性及抑制枝晶穿透的重要功能,其性能优劣对电池整体运行稳定性具有决定性影响。传统的玻璃纤维(GF)隔膜孔径无序、电解液浸润性差,导致钠金属沉积不均匀。本研究围绕钠金属电池中界面不稳定与离子迁移受限的核心挑战,提出并构建了一种双极性功能团(?F与?SO?H)协同修饰的UFS2@GF隔膜。该隔膜在结构层面实现了对Na?脱溶剂化、迁移动力学和成核行为的多重调控,在界面层面诱导形成富无机组分的稳定SEI,显著抑制枝晶生长与副反应,整体提升了电化学性能与循环稳定性。DFT进一步揭示了MOF骨架对Na?吸附与迁移路径的本征调控机制,为实验结果提供了理论支撑。UFS2@GF隔膜的SMBs中钠沉积/剥离行为示意图理论计算揭秘MOF骨架的“离子高速通道”:UFS2@GF中亲钠特性及扩散机制模拟全电池性能验证:兼顾高倍率与长寿命研究得到国家自然科学基金、广西壮族自治区重点研发计划等项目资助。相关成果以Synergistic Dual-Polar-Functionalized Metal?Organic Framework-Modified Separator for Stable and High-Performance Sodium Metal Batteries为题发表于ACS Nano。论文第一作者为博士研究生吕佳泽,通讯作者为曹晏研究员。论文链接:https://pubs.acs.org/doi/10.1021/acsnano.5c04051